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The pseudopotential and perturbation theory are used to derive the first three 
terms in the expansion of the smallest eigenvalue of the Helmholtz equation 
both for infinite two-dimensional systems with an array of perfectly absorbing 
circles centered on (1) a square lattice and (2) a triangular lattice, and also for 
infinite three-dimensional systems both with arrays of perfectly absorbing 
interspersed cylinders and with an array of perfectly absorbing spheres centered 
on (1), a simple cubic lattice, (2) a body-centered cubic lattice, and (3) a face- 
centered cubic lattice. In all cases, the perturbation parameter involves the ratio 
of the radius of the absorber to the lattice spacing. These eigenvalues and the 
corresponding eigenfunctions are used to compute the first three terms of expan- 
sions of the first passage time of a diffusing point particle randomly placed out- 
side the absorbers. Expressing the perturbation parameter as a function of the 
area or volume fraction occupied by the absorbers reveals a remarkable 
similarity among the rates of diffusion-limited reaction for arrays of absorbers 
and the corresponding radially symmetric system containing one central 
absorber. 

KEY WORDS:  Pseudopotential; perturbation theory; boundary-value 
problem; nonseparable; Helmholtz equation; Lambert series; first passage time; 
circles; cylinders; spheres; two dimensions; square lattice; triangular lattice; 
three dimensions; simple cubic; body-centered cubic; face-centered cubic; Sinai's 
billiard. 

1. I N T R O D U C T I O N  

Given the complete set of eigenfunctions T(m~ and eigenvalues k 2(~ for 
the Helmholtz equation, 

(V 2 + k2 ~ TCm0~(X) = 0 (1) 
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satisfying homogeneous boundary conditions on a boundary B, the 
pseudopotential has been used to introduce a boundary perturbation in the 
form of an additional small spherical boundary on which the eigen- 
functions vanish. ~1) The pseudopotential 4U(x; 4) is a linear operator; 
including it on the right in Eq. (1), 

(~72 .q_ k 2) ~r7 m : ~U(x; 4) ~m(X) (2) 

establishes the additional spherical boundary. Provided that the pertur- 
bation parameter ~ is much less than 1, Eq. (2) is solved using Rayleigh- 
Schr6dinger perturbation theory. (2) 4 can be taken to be the order of the 
ratio of the radius e of the sphere to the smallest distance between the 
sphere's center and the boundary B. One can add many small spherical 
boundaries; then ~ is the order of the ratio of e to the smallest distance 
between spheres or between any sphere and B. 

The pseudopotential employes singular solutions for the Helmholtz 
operator centered in the sphere. The amplitudes of these singular solutions 
enforce the vanishing boundary condition on the sphere's surface. The 
pseudopotential has been used to generate the correct perturbation expan- 
sion of the eigenvalues and eigenfunctions for two three-dimensional 
problems with the foregoing characteristics. (1) 

Although one can imagine several generalizations of the pseudopoten- 
tial, one of the purposes of this paper is to give a derivation and 
application of the pseudopotential for a two-dimensional region bounded 
by B in which one or more circles are introduced on which ~m(X) vanishes. 
As an application, we determine the expansion of the smallest eigen- 
value and its eigenfunction for Eq. (1) with an infinite array of perfectly 
absorbing circles centered on the points of a square lattice with lattice 
spacing L. The "unit cell" for this problem is taken to be a square of side L 
with the normal derivative of ~m(X) vanishing on its perimeter B, a 
reflecting boundary condition, and with a centered circular boundary of 
radius ~ on which ~ ( x )  vanishes, an absorbing boundary condition. The 
expansion parameter ~ is taken to be [log(L/e)]-1. The first three terms in 
the expansion of the smallest eigenvalue and its eigenfunction determine 
the first three terms in the expansion of the first passage time (the first 
moment of the probability of survival until time t) of a diffusing object 
placed at random outside the absorbing circle. We also obtain the 
analogous solution of Eq. (1), for an infinite triangular array of absorbing 
circles. We take the "unit cell" to contain two circles, and we impose 
periodicity for a rectangle bounded by B rather than a boundary condition. 
The expansion of the exact smallest eigenvalue and eigenfunction are 
obtained by the application of the two-dimensional pseudopotential to a 
separable problem, with the boundaries being an absorbing circle centered 
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in a reflecting circle. To further demonstrate the utility of the 
"two-dimensional" pseudopotential, we find expansions of the smallest 
eigenvalue for periodic arrays of absorbing nonintersecting cylinders. 

We also use the three-dimensional pseudopotential (1) to find the 
corresponding solutions of problems in which arrays of perfectly absorbing 
spheres are centered on the points of simple cubic (sc), body-centered cubic 
(bcc) and face-centered cubic (fcc) lattices. 

In the last section these results are used to give the first two terms in 
expansions of the rates of diffusion-limited reaction. We obtain rates for the 
aforementioned arrays of circles. We obtain the same results for the 
diffusion-limited reaction rates in the three-dimensional arrays of spheres 
that were previously obtained from time-independent formulations. ~ 
Beyond the new feature of tackling the time-dependent problems with the 
same boundaries, one can appreciate that the systematic pseudopotential 
method allows one to solve a variety of particular problems within the 
same framework of perturbation theory. 

2. PSEUDOPOTENTIAL  FOR T W O  D I M E N S I O N S  

The derivation of the pseudopotential follows closely that given for 
three dimensions, with some minor modifications. The pseudopotential 
~U(x; 3) is derived by first separating the eigenfunctions of Eq. (1) into 
radial and angular parts about the center of the circle of radius e: 

Tm(X ) = ~ A,.n cos(nO)[J.(kmr)-  T.(kme) Yn(kmr)] 
n = O  

T. (~)  - & ( ~ ) / r . ( ~ )  (3) 

Tm.(r) --= A, . . [J . (kmr)  - T.(kme) Y.(kmr)] 

For the purposes of pedagogy, cosine angular dependence is assumed; the 
derivation is the same for terms containing sin(n0). 

Although Eq. (3) exactly satisfies the vanishing boundary condition on 
the circle, it does so by using in addition to the Bessel functions of the first 
kind of order n, J.(~), bounded for real ~, Bessel functions of the second 
kind, the Weber functions of order n, Yn(~), singular as ~ goes to zero. This 
singular behavior can be evoked by a term as on the right of Eq. (2), 
because the operator of Eq. (1) acting on T=(x) as given in Eq. (3) results 
in the following equation for all n: 

(V 2 + k 2 _ n2/r 2) ~u=.(r) 

= --Am. T.(kmz)(V 2 + k 2 - n2/r 2) Y~(k=r) 

= --Amn(1 + 6n) 2 "+ 'n! T.(k, .a) ~(x)/(kmr)" (4) 
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The symbol 6n equals 1 if n equals 0; otherwise ~. equals 0. With the two 
coordinates xl and x2, the symbol 6(x) is equivalent to 6(Xl)6(x2), the lat- 
ter being the Dirac delta function. To derive the right-hand side of Eq. (4), 
one notes first that everywhere but the origin it must vanish because J.(ff) 
and Y.(~) are the eigenfunctions for the operator on the left-hand side. One 
needs to use the leading term in the expansion of Yn(~) as ff goes to zero (5) 
and to use Green's first theorem, (6) 

fl~ dA f(x)VZg(x) = f ds f(x)fi �9 Vg(x ) -  ~R dA Vf(x) �9 Vg(x) 

In our case R is a circular region of radius 6, the line integral follows the 
circumference in the positive direction, h is the unit vector in the outward 
normal direction, and �9 is the vector dot product. When one integrates the 
right-hand side of Eq. (4) over R after multiplying by r n, one gets an 
integral of this form; the line integral is constant as 6 goes to zero, 
manifesting the delta function, and the integrand of the new surface integral 
exactly cancels the integrand on the left proportional to n2/r 2. In the limit 
that ~ goes to zero, all other terms vanish. Thus we see that using the 
singular solutions of the Helmholtz equation to create the vanishing boun- 
dary condition on a circle entails a new term at only one point [-see 
Eq. (2)3. 

The amplitude of the singular part of 5Ur..(r) is equal to 
-Am.T.(kme),  from Eq. (4). Therefore, once Am. is replaced by a linear 
operation at the origin on ~gm.(r) which gives the amplitude of the non- 
singular part of ~, . .(r) ,  Eq. (4) self-consistently determines the ~m.(r) 
satisfying the new vanishing boundary condition on the circle. Multiplying 
the right-hand side by cos(n0) and summing over n gives the two-dimen- 
sional pseudopotential. A convenient operation meeting these requirements 
is the following. To educe the amplitude of J.(kmr), one must multiply 
~Um.(r ) by r n and take 2n derivatives with respect to r near the origin. The 
resulting leading order term arises from Y.(kmr) and is proportional to 
log(kmr/2), and the constant term that follows contains the amplitude of 
Jn(kmr). Thus, if one now divides by log(kmr/2), takes the derivative with 
respect to r, multiplies by r log2(kmr/2), and takes the limit r ~ 0, one will 
have isolated a constant proportional to the amplitude of J.(k.,r). Thus, 
obtaining Am. in the following way meets the requirements of the 
pseudopotential: 

--r log2(kmr/2) a 1 a 2" r=0 
Amn -- (-~----l ~.V.-k-~-~, Or log(k.r/2 ) Or 2n [rngtmn(r)] (5) 
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with 
( - 1 ) ! ! -  1, ( 2 n + l ) ! ! - ( 2 n + 1 ) ( 2 n - 1 ) ! ! ;  n>~O 

Co-= 1 ---27 To(k=e ) 
/c 

) rc J ~ - ~ j = ~  +7  ; n > 0  

7 =- 0.577216... 

The substitution of Eq. (5) for Am, into the last line of Eq. (4) results 
in the two-dimensional pseudopotential: 

(V 2 + k 2) ~m(X) 

~, cos(n0) 2 "+ 1(1 + 6n)n! T,(kma) r 1 " log2(kmr/2) 6(x) 
Z., kmCn .=o ( 2 n -  1)!! 2~ 

f d 1 d 2~ 

x ~.dr log(G r/2) dr2. Jr" g*m~(r)] } (6) 

To make Eq. (6) complete, one must include an analogous sum on n from 
1 to infinity of terms with sin(n0) and a sin(n0)-averaged ~g=,(r). 
Expanding T,(kme) for small values of the argument gives 

(V 2 + k2m) I//m(X) = 27zr log2(kmr/2) 6(x) d gSmo(r ) 
log(kma/2) dr log(kmr/2) 

+ O (7) 

Note that this simplification holds only for those eigenvalues for which kme 
is much less than unity. 

Thus, the angle-independent part of the ruth eigenfunction can 
generate the leading terms of a perturbation expansion with ~ the 
reciprocal of a logarithm. Further, for eigenfunctions having these leading 
terms, one can replace 2/km on the right side of Eqs. (6) and (7) with L, a 
length representative of the distance between the boundary B and the 
center of the circle. The error introduced by this substitution is of one 
higher order in [log(L/e)] t and will be exactly corrected in the following 
perturbation step. The resulting formula, 

2~r log2(L/r) 8(x) d gtmo(r ) 
( v  2 + k~)  ~Um(X) = 

log(L/e) dr log(L/r) 
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can now be used with a perturbation method because the eigenvalue 
appears only on the left. 

Neglecting terms of order (e/L)Z[log(L/e)]  1, we obtain the 
pseudopotential as 

~U(x; 4) ~ ~U(x) - ~2rcr log 2 6(x) dr log(L/r)  (9) 

= [log(L/e)] -1 

A merit of this pseudopotential is that, to leading order, one has only the 
multiplicative factor ~. This pseudopotential rejects any logarithmic 
singularity of its operand and thereby educes the constant part b of its 
operand at the origin. For example, if 

then 

lim gtmo(r ) = a log(L/r)  + b + o(1) 
r ~ 0  

eU(x) g~m(X)= [log(L/e)] I 2~zb 6(x) 

In conjunction with the perturbation method, the pseudopotential 
generates a correction 

- b log(L/r)  
log(L/e) 

to the eigenfunction at each step, thereby lowering by one power of r the 
value of the eigenfunction on the circle. After n perturbation steps, one will 
have n corrections to the eigenvalue k~ and the eigenfunction 7~m(X): 

k 2 + + . . .  + 

(10) 
~[Im(X ) "~ ~(m0)(X) + ~ / ~ ) ( X )  "t- ' ' "  + ~n I/'/(mn)(x ) 

When one substitutes these approximations into Eq. (2) with ~U(x) 
given by Eq. (9), the error is O(~) n+ 1. Furthermore, one will have satisfied 
the boundary condition on B exactly and the boundary condition on the 
circle to O(~) n- 1. One can further apprehend the correctness of Eqs. (2) 
and (9) by the examination of the smallest eigenvalue and eigenfunction of 
the problems discussed in the following sections. 

3. C IRCLE IN A S Q U A R E  

The two-dimensional pseudopotential (9) is used to determine the first 
three terms in the expansion in powers of [log(L/e)] -1 of the smallest 
eigenvalue and its eigenfunction in the boundary value problem 

(V 2 + k 2) gt(x) = 0 
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with the following boundary condition and periodicity condition: 

~(x , ,  x2) = 0 if x 2 + x 2 = ~2 

gt(xl, Xz) = gt(xl + mL, x2 + nL), m, n ~ Z 

The eigenvalues and eigenfunctions of the Helmholtz equation for this 
array of absorbing circles are involved in the quantum mechanical 
formulation of Sinai's billiard, c7) 

To begin, the orthogonal eigenvalues and eigenfunctions for the 
problem without the perturbing centered circular boundary having the 
symmetry of the perturbed problem are as follows: 

k 2 ( O ) - ( 2 ~  2 (i214i 2) 
il,2 - \ L J 

~cO)(x ] _ 2 cos(2uil x l /L)  cos(2~i2xa/L) 
~,i2, , -  L(1 + (5~) 1/2 (1 + 6~2) 1/2 

Defining 

U!k.) . (t) d x  1 d x  2 t[tili2 ( ) 
I112 ' J l  J2 ~ a L / 2  

with U(x) the pseudopotential operator given in Eq. (9), and using the 
Rayleigh-Schr6dinger perturbation theory cz) for a two-dimensional 
problem gives 

k2O) ff(o), co) 2u/L: 
00 ~-- ~ 0 0  ' 0 0  (11) 

Furthermore, 

gqo.)(x ) rzco), co) 
~ g ( 0 ~ ) ( X )  = _ _  t t [ /2" " ~ i l  i 2 '  00  

,1,,2=o k co) 

In this paper, a primed summation indicates that the term with all indices 
equal to zero is omitted. Substituting the value of U c~176 and the other 

il iz ' O0 

quantities given above, we obtain 

% ~ ) ( x )  = - -  

It is interesting to note 

2 ~ ,  cos(2~ilxl /L)  cos(Zrtizxz/L) (12) 
7tL i~,iz=0 (1+6~)(1+~i2)( i2+i~)  

V 2  (1" - 2 ~  V 1 ] 
�9 , o o , ( , , ) = - z - L z 2  . 5 ( x , - - i , L )  a ( x 2 - i z L )  

11,12= 0(3 
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Therefore ~U~o~)(x ) is a periodic Green's function for the Laplace operator 
plus a constant. This is perhaps the easiest way to see that as p goes to 
zero, 

logp  Top 2 ~s  f- . . .  p 2-x~  § x~ (12') 
~u(~ ~ - - ~  -} L 2L L 2 

In terms of the constant as, the second-order correction to the eigenvalue is 

k2(2)  = U(O) .  ( l ) _  2~r~jL 2 (13) 
O0 - -  O 0  ~ O 0  - -  

After reducing the double sum in Eq. (12) to a single sum, (s) one finds 
the constant ~ to be 

~, = log(21r) - 2/6 - 2l(2~) = 1.3105329... (14) 

with l(x) the Lambert series, 

l(x)= ~ k l exp(_kx) / [ l_exp(_kx)]  
k = l  

= - l o g  [1 - e x p ( - k x ) ]  (15) 
1 

= �89 l o g { 2 q l / 4 / [ O ; ( O )  t93(0  ) 0 4 ( 0 ) ]  }; q = e x p ( - x / 2 )  

/(2~) = �89 log[re e x p ( -  rc/6)/K(2-'v2)] = 1.872682450... x 10 - 3  

Only the first three terms of the rapidly convergent Lambert series are 
necessary to establish the numerical value appearing in Eq. (14). The 
"closed form" involving theta functions follows from the infinite-product 
representation of ~'~(0); and the relationship between the three theta 
functions and the complete elliptic integral K(k) could be used in the 
evaluation of l(2~). The constant ~, has been evaluated previously in a 
related context. (9) All of the numerical values for the constants appearing in 
this paper are expected to be accurate to the number of places given and 
have been rounded up if necessary. A contour plot of g~(0~)(x) with L = 1 is 
shown in Fig. 1, illustrating in particular the logarithmic singularity. 

The second-order eigenfunction is found from the formula 

__ qt2- ~ . (1) ..K '~00 /-7(0) . (0)7  
,,,2=o [ ,,,2,OO-k2O, V,,,2,ooj 

_ 1 ~, cos(2nilXl/L) cos(2ni2x2/L) 
L ~,,i2=o (1 + ~i,)(1 + ~i2)(il 2 + i 2) 

x  2(i2 + (16) 
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Fig. 1. A contour plot of ~ ) ( x )  [Eq. (12}] with L =  1.0. Both the x and y axes extend 
between 0 and 0.5. Because of the symmetry of the problem, only the first quadrant is shown, 
and the maximum value of the function, 0.3466..., is at the upper right corner. Every fourth 
contour is labeled with the value of the function and thickened. The dashed contours are 
equally spaced at intervals of 0.05. The value of the function on a radius equal to 0.1 varies 
less than 0.02 %. 

A contour plot of ~o~)(x) is similar in appearance to that of ~mo~)(x), 
but ~ ) ( x )  has larger gradients. The method used to find ~2(2) gives 'v00 

oo - -  ~ o o , o o  - - L  2 

/3~.: Z '  I 
i,,i2=0 (1 + 6i1)(1 + 6i2)(i~ + i~) 2 = 1.506703010... (18) 

Again, a related formula (8) is used to reduce the double sum to a single 
sum, and fls is decomposed into a few numbers, including the zeta function 
~(3) and two rapidly convergent series analogous to Lambert series (see 
Appendix A). These are all the results we need to find three terms in the 
perturbation expansion of a first passage time problem, as will be seen 
below. 

Higher order terms in the expansions of the eigenfunctions and eigen- 
values for this problem and others solved using the pseudopotential can be 
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obtained from standard perturbation formulas. It is to be expected that the 
higher the order, the more manipulations required. Because of the 
logarithm in the perturbation parameter, one may need more than three 
terms for accuracy in a particular application. 

4. A T R I A N G U L A R  A R R A Y  OF CIRCLES 

The related problem of determining the perturbation expansion of the 
smallest eigenvalue and the corresponding eigenfunction for the Helmholtz 
equation with a vanishing boundary condition in the exterior of a regular 
triangular array of circles separated by the distance L involves two minor 
accretions to the analysis of the problem with the square array solved in 
the preceding section. First, it is convenient to generate the infinite 
triangular array by periodically repeating a rectangular "unit cell" with 
horizontal length L and vertical length 31/2L centered on the origin, 
containing two circles of radius e centered on the points (L/4, 31/2L/4) and 
(-L/4, -3roLl4). And the zeroth-order eigenfunctions are all four com- 
binations of the sine functions and cosine functions. The smallest unpertur- 
bed eigenvalue (zero) has a unique (constant) eigenfunction, so one can use 
the procedure given above with the sum over eigenfunctions including, for 
each pair of indices, all combinations of sine and cosine. If one were to 
compute the expansion of any other eigenvalue of this system, one would 
need to use perturbation theory for degenerate eigenfunctions. (m) The 
expansion parameter ~ is taken to be [log(L/e)] -~, as above. Following 
the procedures of the previous section, we have 

k2(O) = 0, 
oo 

k 2 ( 2 )  41r t 
oo 31/2L2 ' 

1 
~(~176 - 31/4L 

--4 ~ ,  
~~ - 33/4L ;,i2=o (I 

4~  
k2(1) oo - 31/2L2 

k2(3)= 4x ( 4flt'~ 
O0 31/2L 2 ~2_3rc2) 

+ 6/1)(1 + 6,2)(;~ +/22/3) 

I 2~i2x2 ~i2 2~ilxi cos ~ cos ~ cos 2 X COS --~----- 

2 ~ i l X 1  " lTi l  " 2 1 ~ i 2 x 2  ?] 
+ sin ~ sin -~- sm ~ sin 

(19) 
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with 

et = log(2=) - 2l(2rc31/2) _ 2m(7c31/2) _ _ _  

= 1.39303795... 

~3 ~/2 

12 

with l(x) given in Eq. (15) and with 

o o  

m(x) = ~ (--)k k-1  exp ( -kx ) /E1  - e x p ( - 2 k x ) ]  
k = l  

= -�89 + log[~93(0)] }, q = e x p ( - x )  

= - ~  log{2ql/4[O3(O)]2/[a2(O) 04(0)] } 
/(2rc31/2) = �89 log [7r2 u3 exp( - 70 l/2/6)/K(sin(rc/12)) ] 

= 1.8779062... x 10 5 

m(rc31/2) = _~ log[4 exp( - ~31/2/4)] = -4.32413966... x 10 -3 

and the constant appearing in z~2(3) ' ~ 0 0  

1 

,,,2 (1 +a,~)(1 + 6,2)[i~ + (i2/3)]2 

(20) 

=3.4519622... (21) 

this last summation being restricted to nonnegative il, i2;  either il and i 2 

are both even or both odd and the prime indicates that both equal zero is 
excluded. Equation (21) is numerically evaluated in the same way as 
Eq. (18). As expected, ~u(o~)(x ) has two singularities in the unit cell, one at 
the center of each circle. 

5. R A D I A L  S Y M M E T R Y  

We now repeat the steps used above for a separable problem having 
an exact solution. Solving Eq. (1) between two concentric circles of radii 
and R with ~?gJm(r)/SrlR and g~m(e) equal zero leads to eigenfunctions of r 
alone, and therefore the terms in the exact two-dimensional pseudopoten- 
tial (6) with n greater than zero vanish, One begins with the orthonormal 
eigenfunctions for the problem with the inner circle removed 

Jo(km r) 
7U(mO)(r ) - ~zU2RJo(kmR ) 
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with k m the mth nonnegative root of J l ( k R )  = 0. Using the pseudopotential 
given in Eq. (9) with ~ = [ log(R/e ) ] -1  gives 

1 
k~ (~ = O, T~o~ - zd/2 R 

- 1 log = 

k2~2~_ 3 1 - log -~ (22) 
2R 2' T~~ = 7z 1/2~--R 12 

5 
k2(3) - 6R 2 

Fourier-Bessel expansions of the functions appearing in the eigen- 
functions have been used to reduce the sums resulting from the application 
of the perturbation theory. The approximations to the eigenvalue are those 
found by expanding the exact eigenvalue. The Rayleigh-Schr6dinger 
perturbation theory takes the coefficient of the zeroth-order eigenfunction 
to be one, (2) and thus generates orthogonal but not orthonormal 
eigenfunctions--the explanation for the small difference between the 
second-order eigenfunction given above and the corresponding term in 
the expansion of the exact orthonormal eigenfunction in powers of 3. 
Obtaining the correct solution to this problem further corroborates the 
two-dimensional pseudopotential [Eq. (9)] and its application. 

6. A R R A Y S  OF O R T H O G O N A L  C Y L I N D E R S  

The purpose of this section is to apply the pseudopotential derived for 
two dimensions to problems with periodic arrays of nonintersecting per- 
fectly absorbing cylinders. For these problems, the pseudopotential extends 
along the axes of the cylinders. We consider the smallest eigenvalue and 
eigenfunction for two orthogonal arrays. One could use the pseudopoten- 
tial also for periodic arrays of nonorthogonally placed cylinders; the 
restriction is that they neither intersect nor come close to intersection. The 
expansion parameter ~ is taken to be [log(L/e)] -1, with L the side of the 
centered cubic unit cell and e the cylinder radius. 

The first array has two cylinders in the unit cell. One cylinder's axis is 
the line formed by the intersection of the planes xl = 0 and x3 = - L / 4 .  The 
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other cylinder's axis is the line formed by the intersection of the planes 
x 2 = 0  and x3=L/4. Periodicity generates an infinitely tall stack of 
orthogonally alternating equivalent parallel layers of parallel cylinders. The 
pseudopotential (9) becomes 

U(x )=2=  r l log  2 L 6(Xx)6 x3+-~ c~rllog(L/rl) 

L ~ 1 +r21~ 1 
with r 2 = x } + (x3 + L/4) 2 and r~ = x~ + (x3 - L/4) 2. 

In practice, the angular integral appearing in Eq. (9) is not required 
for these problems. Using this pseudopotential with the perturbation 
formulas given above gives the analogous results. 

The expansion for the smallest eigenvalue is 

4~ 
k2(l) 
000 ~ L-~ 

000 = ~ as -[- 

k2~3, 4 = [ (  = )2  7=2 2/3, t2/3(1) ] 
ooo=~-~ e " + ~  -f 720 =2 ~2 j 

with 

and 

(_)i1+,2 
/3(x) = (1 + ~ii)(1 + ~i2)(il 2 q- xi~)(i 2 + xi 2) il, i2 = 0 i3 = 1 

~2 oo exp - (2=jx 1/2) 
= T  j ~ l j 2 [  1 ~ T x p  - -  ~ / 2 ) ]  2 

/3(1) = 1.850856357... x 10 -2 

The constants ~, and/3, are given in Eqs. (14) and (18). 
The second array we consider has three cylinders in the unit cell. The 

axes of the three cylinders are the lines formed by the intersection of the 
planes x~ =L/4 and x2= -L/4,  the planes x2 = L/4 and x 3 = -L/4, and 
the planes x3=L/4 and x~ =- -L /4 .  The array has full cubic symmetry, 
with three equivalent interspersed orthogonal stacks of parallel layers 
composed of parallel cylinders. It could be constructed by putting cylinders 

822/49/3-4-22 
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on the centers of the square holes that one would see if one looked perpen- 
dicular to the layers of the first array. The expansion of the smallest eigen- 
value is 

67~ 
k 2 ( l )  

000 = " ~  

000 = a s  + 

,~o00L-2(3~=~-7 e s + g  + 240 ~2 + 

with the formula for fl(4) given in the previous case, and 

fl(4) = 8.604739884... x 10 . 6  

It is interesting to note that, whereas/,~2(1) reflects only the number of '~000 
cylinders, the orientation of the cylinders is first manifested in ~2(2) '~000 " 

Furthermore, unlike the two-dimensional problems discussed, more 
than two summations are required (in general) for the representations of 
the higher order terms in the expansion of the eigenvalues and eigen- 
functions. 

7. A R R A Y S  OF SPHERES 

These calculations follow closely those for the arrays of circles, and we 
omit many of the details. Expansions in the perturbation parameter of the 
average rate of trapping of diffusing point particles randomly placed (in the 
exterior) in the presence of arrays of perfectly absorbing spheres have been 
given. (3'4) Using the three-dimensional pseudopotential, (1) we compute 
expansions for the expected lifetime of such a particle with perfectly 
absorving spheres centered on the simple cubic (sc), body-centered cubic 
(bcc), and face-centered cubic (fcc) lattices. As above, to get the first three 
terms in the expansion of the first passage time, one needs only the first 
three terms in the expansion of the smallest eigenvalue and the first two 
corrections to the corresponding eigenfunction. For our purposes, the 
three-dimensional pseudopotential is 4g6(x)(~?/Or)r, and ~ is taken equal to 
elL, with e the sphere radius and L the length of the side of the cubic 
"unit cell." (1 
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The case of absorbing spheres centered on the simple cubic lattice 
results in the "unit cell" being a cube with a central sphere. Due to the sym- 
metry of the problem, there will be a vanishing normal derivative of the 
eigenfunctions on the surface of the cube. There is complete analogy with 
the two-dimensional problem of a centered absorbing circle within a 
reflecting square treated above, and the results follow: 

47E k2(1) 
000 ~--- Z-2 

4?Z~sc k2(2) 
ooo - -  L2 

k2(3)=47•( 2 8 ) 
ooo  so-  so 

(23) 

- 8  
~ ( a )  ( x ~  - -  - -  ooot ~-- 1:L3 /2  

~ , cos(27:ilx:/L) cos(2rci2x2/L) cos(2zci3x3/L) 
il , i2,i3= 0 (1+~i,)(1+~i2)(1+~,3)(i2+i2+i~) 

~s~= 2.837297479.,. (24) 

oo 
fls~ = Z '  1 

i l , i2 , i3~0  (1 "-F •i l)( l  "~ 6/2)(1 "4- c5,3)(i ~ + i~ + i~)2 

= 2.0665395... (25) 

The numerical constant ~sc has been evaluated/9'11 13.2o) We evaluate it in a 
new way in Appendix B. The primed summation in Eqs. (23) and (25) is 
over all nonnegative i 1, i2, and i3, excluding (0, 0, 0). Techniques similar to 
those described above are used to evaluate/~sc (see Appendix A). 

The remaining two problems, with the spheres centered on the bcc 
lattice or on the fcc lattice require that the "unit cell," a cube of side L 
centered on the origin, contains more than one absorbing sphere. There is 
much in common with the problem having the triangular array of circles. 
Using periodicity with length L to establish the bcc array, it is sufficient to 
place two spheres in the "unit cell" centered at (L/4, L/4, L/4) and 
( - L / 4 , - L / 4 , - L / 4 ) ,  and to establish the fcc array it is sufficient to 
place four spheres centered at (L/4, L/4, L/4), ( - -L/4,-L/4,  L/4), 
(-L/4,  L/4,--L/4), and (L/4,--L/4,--L/4). Because of the symmetry 
imposed by these arrays, one must now use the eight combinations of 
either using a sine or a cosine function for each of the three variables. The 
results for the bcc case are 
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8~ 
k2(U 

000 =L-'~ 

8~z k2(2) 
000 ~ ~ (Xbr 

k2(3) 87"c [ 2 32 ) 0oo =vVu -  uo 

oo 
w u )  x - - 16 ~ ,  1 

" 000( ) j.gL3/2 il,i2,i3=0 (1 § •il)(1 § 6i2)(1 § 6,~)(i~ + i 2 + i~) 

2~il xl ' 21rizX 2 Gi 2 roll 
cos ~ cos T cos • - - Z - -  cos -5- 

2 g i 3 x  3 7~13 
X COS C O S -  

L 2 

+ sin 2rcilxl sin rct~ 21zi2x2 . ~i2 
L ~ -  sin - L sin 

2~13x 3 7~13 
x COS ~ COS 

+ sin 2rEilx~L sin -~Tztl cos ~2zci2x2 cos ff-~ 

27ci3x 3 . 7Zl3 
x sin ~ sm 

2gilxl gl  1 . 2 g i 2 x  2 . gi2 
COS ~ s in  s m  + cos L T 

2,'~i3x 3 . - ~ )  
• sin L sm 

(26) 

~bc = 3.639240... (27) 

flbc = E 1 1 
il,i2,i 3 =0 (1 + 6i~)(1 + 5e2)(1 + 6i3)(i 2 § i~ + i2) 2 

=0.79182201... (28) 

The primed summation in Eq. (26) has the same meaning as in Eq. (23). 
The value of abo is given in Ref. 13. The sum leading to flbc, 1 ~i l i2 i  3 is over 
nonnegative indices, and furthermore the sum il + i2 + i3 is even, and 
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(0, 0, 0) is excluded. Techniques similar to those described above are used 
to evaluate /~bc" 

The results for the fcc case are 

16n k2(1 ) 
o o o -  L 2 

k 2 ( 2 ) _  161Zafc 
ooo - -  L 2 

k2(3)_ 16n f 2 128 
ooo - - / r  t ~c - - - j -  ~o / 

~ ( 1 )  {X) = - -  
000 

oo - 3 2  ~ ,  1 

nL3/2,1.,2.~3= 0 (1 + 6i,)(1 + 3,2)(1 + 6,~)(i~ + i~ + i~) 

2nil  X 1 ~i1 27ZizX 2 7ci 2 
• cos - - - T -  cos 5 -  c o s - - T -  cos 5 -  

2ni3x3 hi3 
• c o s - - T -  cos 5 -  

2nilxl. n i l .  2Tcizx 2 . ni 2 
+ s i n ~ s m s - s m  L s i n s -  

2;z i3x3  . 7ti3~ 
x sin ~ sin ~ - )  

(29) 

are = 4.5848756... (30) 

fife = ~ 2  1 
il,i2,i3 = 0  (1 + 6il)(1 + 6i2)(1 + 6i3)(i~ + i22 + i2)23 

=0.31442669... (31) 

The primed summation in Eq. (29) has the same meaning as in Eq. (23). 
The value of ~fc is given in Ref. 13. The sum leading to flbc, 2 ~,ili2i3 , is over 
nonnegative indices, and furthermore il, i2, and i3 are either all even or all 
odd, and (0, 0, 0) is excluded. Techniques similar to those described above 
are used to evaluate/~fo. 

The three-dimensional pseudopotential also gives the correct first three 
terms in the expansion of the exact smallest eigenvalue and eigenfunction 
for a separable problem with an absorbing sphere centered in a reflecting 
sphere, analogous to the radially symmetric two-dimensional problem 
discussed above. 
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8. F IRST P A S S A G E  T I M E S  

One can expand an arbitrary initial probability density P0(x) in the 
eigenfunctions ~m(x) of the Helmholtz equation to obtain the time- 
dependent solution of the diffusion equation, 

D V2p = QP/at (32) 

By separating the time variable, one gets the solution in the form 

P(x, t) = Z am ~m(x) e x p ( - k ~  D t )  (33) 
m 

with ~m(X) satisfying Eq. (1), and 

am-- fedxeo(X) ~m(X)/fedx [~m(X)]2 

The integral sign ~ indicates integration over all space between the 
circle of radius e and the boundary B. The first passage time [ is defined to 
be 

[ -  f dx f?  dt P(x, t) 

In what follows, subscripts are attached to t-to distinguish particular 
problems. If we choose Po(x) equal to a constant Po , then 

[=(Po/D)~.mlf dx..(x)]21k~f dx[TJm(X)] ' (34) 

For the two-dimensional problem of the circle centered in the square, P0 = 
(LZ--ne2)-l ;  for all m =  (il, i2) except (0, 0), ~ dx ~ ) ( x )  is proportional 

i2~l/2/L ~ and ~ d x  ~(mO)(x) is proportional to to e(i2+i~)-l/2Jl(2rce(i2+ 2f / 1, 

(e2/L) log(e/L). The latter results, along with the existence of the sums 
leading to higher order corrections, are sufficient to show that the term 
m = (0, 0) in the sum (34) is solely responsible for the expansion of {s in 
powers of ~, equal to [log(L/e)] 1, from ~ 1 through ~1. 

Substituting the expansion of the eigenvalue and eigenfunction of m = 
(0, 0) into Eq. (34) gives 

- ~2.----7 + a x  [ ~ ( o ~ ? ( x ) ]  2 --00 I'~ L ~ 3  /e-2(1) '~00 
x [(L 2 -- ~e 2) D~ k2(ol) ] -1 

= [log(L/e)] -1 
(35) 
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Performing the integral in Eq. (35) reveals that to order 1 the term in 
parentheses multiplying ~2 equals 0 [see Eqs. (11)-(18)]. Including the 
numerical value of the constant cq [Eq. (14)] gives 

[~ = (L2/2rcD){ log(L/e ) - -  1.3105329... + O [ l o g ( L / e ) ]  2} (36) 

A formula analogous to Eq. (35) holds for the triangular array. 
Including the numerical value of the constant a, [Eq. (19)] gives 

[, = ( 3 ' / 2 L 2 / 4 u D ) { l o g ( L / e ) -  1.39303795... + O[log (L / e ) ]  2} (37) 

The same procedure applied to the problem of the absorbing circle 
within the reflecting circle, for which the expansion of the eigenfunction 
and eigenvalue were given in a previous section, gives the correct first three 
terms in the expansion of t-previously obtained. (~4) In this case, all terms of 
O[log(L /~) ]  " vanish for n ~> 1. We do not know if this is also true in 
Eqs. (36) and (37). 

Finally, Eqs. (32)-(35) and results from the last section are carried 
over to the problem of the mean first passage time in three-dimensional 
problems. Analogous results are used to prove that only the eigenvalue 
m =  (0, 0, 0) contributes the first three terms in the expansion of [ in 
powers of ~. Namely, for all m except (0, 0, 0), only the eigenfunctions that 
are the product of three cosine functions have a nonvanishing integral 
~ dx ~u~)(x), proportional to 

~2(i2 + i 2 + i 2) -,/2 j1(2~e(i  2 + i~ + i~)l/2/L) 

with Jl(~) the spherical Bessel function of the first kind. (5) Also, 
~ d x  ~ ) ( x )  is proportional to e 2. For the three-dimensional problems, 
P o = ( L 3 - n a u e 3 )  - l ,  with n =  1 in the simple cubic case, 2 in the body- 
centered cubic case, and 4 in the face-centered cubic case. 

For the simple cubic case (the centered absorbing sphere within a 
reflecting cube), Eq. (35) becomes 

~,~ooo r H ~ o o o  / ~ooo dx [V(o~))o(X)] 2 / sc=L 3 1-/~2(1-----5-+ ~/b2(1)/ k2(1) 
'~ooo ',c,~ooo J '-ooo 

x [(L 3 4 3 2(1) --1 -- ~z~ ) D~  koo o ] 

~, = e/L 

(38) 

Here the integral ~ is performed over the space between the surface of the 
sphere and the cube. It is found that the quantity in the parentheses 
multiplying ~2 in Eq. (38) is zero, to order 1. 
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Substituting the results from the last section, Eqs. (23)-(25), leads to 

[~r = ( L 2/4rcD )fi ( L/~ ) - ~c + O( # L ) z ] (39) 

Similarly, for the cases with the spheres centered on the bcc lattice or 
the fcc lattice, using Eqs. (26)-(31) gives 

{b~ = (L2/8gD)[(L/e)  - ebc + O(e/L) 2 ] (40) 

[to = (LZ/16rcD)[ (L/~) - er~ + O(a/L) 2 ] (41) 

The relevance of Eqs. (36), (37), and (39)-(41) to the steady-state rate of 
trapping by arrays of perfectly absorbing circles and spheres is discussed in 
the next section. 

9. D I F F U S I O N - L I M I T E D  R E A C T I O N  RATES 

We have used the pseudopotential to obtain the expansion of the 
smallest eigenfunction and eigenvalue for the Helmholtz equation, these 
being sufficient to find the first terms in the expansion of the first passage 
time problem. 

If one defines 

Q(x) = dt P(x, t) (42) 

where P(x, t) is a solution of Eq. (33) with an initial density Po(x), then 
Q(x) satisfies Poisson's equation 

DVZQ(x) + Po(x) --0 (43) 

and the first passage time for the time-dependent problem is obtained from 
this time-independent formulation: 

[=  f,: dx Q(x) (44) 

It was not [, but k, the rate constant of steady-state diffusive flux, that 
was determined in a time-independent setting. (3'a~ The product of k, a (the 
number of absorbers per unit volume), and the integral over the "unit cell" 
of the steady-state density equals the steady-state diffusive flux from a 
"unit cell." Therefore, k is defined by 

ka f~ dx Q(x) = ka[= - D  f~ ds fi" VQ(s) = 1 (45) 
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with the second integral over the surface of the absorbers in the "unit cell," 
and fi the outward unit normal vector. In what follows, we use the 
reciprocal relation between { and k given in Eq. (45). 

One can derive a pseudopotential for the solution of Eq. (43). One 
then employs singular solutions satisfying the boundary condition on 
B exactly. The resulting perturbation expansion is more implicit than 
in the methods described herein. This runs largely parallel to the 
methods of Refs. 3 and 4, and although it has its advantages, largely due to 
systematizing the procedures, the issues one would need in order to carry 
the perturbation to infinite order and thereby obtain an exact solution to 
the problem are the same, regardless of the perturbation method used. The 
nature of these issues is revealed in this as well as in a related problem of 
electrical conductivity of a composite medium. (15'16) 

For the two-dimensional problems, to facilitate comparison, we 
employ a common expansion parameter log(~b) -~, with ~b the fraction of 
the area occupied by the absorbing circles. First, for the radially symmetric 
case, the expansion of the smallest eigenvalue is given in Eq. (22), and with 

= ( 8 / R )  2 and a = 1/rcR 2, 

- 4 x D I  15 (1"5)2 1 
k2r -  log~b l_l_~g~+log(~b)_____~+O(log~b ) 3 (46) 

Second, for the square array of absorbing circles, with reference to 
Eqs. (11), (13), and (t4), and with ~b = rc(~/L) 2 and a = L  -2, 

I 1.4763366... (1.4763366...) 2 1 -4reD I -t t- O(log ~b)-3 (47) 
k, - log ~b log ~b log(~b) 2 

And third, for the triangular array of absorbing circles, with reference 
to Eqs. (19) and (20), and with ~b = (2~/31/2)(~/L)2 and a =  2/31/2L 2, 

I 1.4975050... (1.4975050...)2 1 - 4 ~ D  1 -t ~- O(log~b) -3 (48) 
k, = log ~b log ~b log(~b) 2 

The remarkable fact is that k2r , k~, and kt, which are the steady state 
rates of absorption per circle, are nearly identical for the same value of ~b, 
so long as log(1/~b) is substantially larger than unity. 

For the three-dimensional problems, to facilitate comparison, the 
expansion parameter ~ is changed to the volume fraction ~b occupied by the 
spheres. For the radially symmetric problem in three dimensions (14) ~b = 
(~/R) 3 and a = 3/4~R 3, 

k3r = 4gDe[ 1 + 1.8~b !/3 + (1.8) 2 ~ 2 / 3  3r - O(~)] (49) 
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For the array of spheres on the simple cubic ~,attice, ~b = 4rce3/3L 3 and 
a = L  -3, 

kso = 4~zDe[ 1 + 1.760119...~ ~/3 + (1.760119...) 2 ~b 2/3 + O(~b)] (50) 

For the body-centered cubic array, ~b = 8~;3/3L 3 and a = 2L -3, 

kbc=4rtDe[l + l.791862...~b~/3 +(1.791862...)2 q}2/3 +o(o)]  (51) 

For the face-centered cubic array, ~b = 16rce3/3L 3 and a = 4L -3, 

kfc = 47rDe[ 1 + 1.791753...~b 1/3 + (1.791753...) 2 ~b 2/3 + O(~b)] (52) 

These results agree with those given previously. ~ Reference 4 gives 
an explicit form for the ~b dependence from which more terms in the expan- 
sion can be calculated. As in two dimensions, the agreement between these 
formulas is striking for ~b substantially less than unity. A caveat is that for 
arrays of infinitely extended objects, such as the arrays of cylinders 
previously discussed, the perturbation parameter is different. Furthermore, 
based on the differences in the second terms in the expansions of the 
smallest eigenvalue for different spatial arrangements, we do not expect 
such close agreement in the second term of the expansions of the 
corresponding rates. 

10. C O N C L U S I O N  

The pseudopotential is useful for obtaining perturbation expansions of 
the eigenfunctions for boundary value problems of the type considered 
here. We have illustrated its use for the Helmholtz equation in two and 
three dimensions, but it can serve the same function for other PDEs in any 
number of dimensions greater than one. It can be generalized to problems 
on which the perturbing boundaries are any surface of a coordinate system 
in which the PDE separates (2) and to problems with more general boun- 
dary conditions on the perturbing boundaries. Although we focus on the 
smallest eigenvalue, when one uses perturbation theory, the pseudopoten- 
tial generates a large number of the perturbed eigenvalues and eigen- 
functions of the Hetmholtz equation satisfying the boundary conditions to 
a given order. It is noteworthy that the perturbation begins with a state in 
which the perturbing boundary does not exist. 

We have used the perturbation expansions of these eigenvalues and 
eigenfunctions to determine the expansions of the first passage time of a 
diffusing point particle placed in regular arrays of perfectly absorbing 
n-spheres in two and three dimensions with the volume fraction of spheres 
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much less than one. For these arrays, there is a remarkable independence 
of the diffusion-limited reaction rate on the geometry of the array, so long 
as the fraction ~b is small. Furthermore, the agreement with the easily 
solvable radially symmetric problems gives one confidence to use mean- 
field arguments and simplified geometries for calculating the rates of 
diffusion-limited reaction in both two and three dimensions under some 
circumstances. 

APPENDIX  A 

In this Appendix we give some details of the numerical evaluation of 
summations required for the evaluation of the constants fl~, fi,, /?so, fibc, 
and /~fc" 

The summation 
oc~ ~4 ~Z~(3) 
2 (i2 + j2)  2__ -t 

180 4 i , j - - I  

~ ~ exp(-2JT0 I 2rr 1 
+Sj_)2"lj2[1-------Txp---(--2j~z)] J -~q  1--ex~---2j~) 

=0.424379776... (A1) 

is evaluated by using formula (17.3.16) of Ref. 8 to perform one of the sum- 
mations. The value of ((3) is given on p. 811 of Ref. 5. Only a few terms of 
the rapidly convergent series on the right are needed to establish the 
numerical value. Two other summations are similarly evaluated: 

[(2i- 1)2+ (2j- 1)2]-2=0.282506814... (A2) 
i , j = l  

(13) (i2 -I- j2/3)-2 = 0 .746153867. . .  
i , j = l  

When one evaluates analogous three-indexed summations appearing in 
the evaluation of the constants for the three-dimensional problems, the 
following summation appears: 

(i2 + j2)-3/2=~z/6--~(3)/2 +@z ~ mK,(2mn~)/n 
i , j=  1 re,n= 1 

= 1.05634852... (A4) 

The transformation to the form on the right can be wrought by using the 
identity(17,18) 

(i 2 + j2 ) - 3/2 2 f0 ~ = ~ de ~ sin(i~) Ko(j~) 
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with Ko(~) the modified Bessel function of the second kind of order zero. (5) 
The modified Bessel function of the second kind of order one appearing in 
the summation is exponentially small for large values of the argument and 
only the nine terms with 3 > m , n ~ > l  are necessary to establish the 
numerical value given above. Similarly, 

[(2i-- 1)2 + ( 2 j -  1 )2] 3/2 = 0.51616622... (A5) 
i , j - - I  

The summations (A4) and (A5) are used in the evaluation of 

i , j , k  = 1 

i , j , k  = 1 

(i2 + j2 +k2)-2=0.61822741... (A6) 
i , j , k  = l 

[ ( 2 i -  1)2+ ( 2 j -  1)2+ ( 2 k -  1)23-2=0.18526797... (A7) 

[ ( 2 i -  1) 2 + ( 2 ) -  1 )2 + (2k)23 -2 = 0.079634357... (A8) 

APPENDIX B 

Here we give details of the numerical evaluation of the constant a~c 
[Eq. (24)]. First, using the symmetry of ~m0~(x), we look at the point 
(6, 0, 0). From Eq. (23) 

~3 

7"~)o(6, 0, 0 ) -  8 ~ ,  cos(2gil 6/L) 
T c L  3 / 2  i l , i 2 , i 3 = 0  (1 + •il)(1 - t -  6i2)(1 "1- 6i3)(i 2 + i 2 + i32) 

1 ~sc 
OL1/2 +~-~+ o(1) (B1) 

Terms that are o(1) as 6 goes to zero will be omitted. One evaluates 
separately those elements of the sum with zero il, i2, or i 3. A triple sum 
remains; performing the summation on il, 

with 

a = ~ cos(27~i 16/L) ~ 1 
�9 2 .2 - a l + r c a 2 - ~  ~. (i~+i~) -~ (B2) 

i l , i 2 , i 3  = 1 tl + 12 + i~ 2 i l  i2 = 1 

exp - [2x(i 2 + i2) m ,5/L] 
al - (i2 + i2~1/2 (B3) 

i t , i 2  = 1 l 2 1  

exp -- [2~(i 2 + i2)1/2] 
a2==- ~ (i~+i~)i-iY~iTs 2 _ - ~ _ i 2 1 , / 2 ] }  (B4) 

i I , i 2 = 1 
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The summation on the right of Eq. (B2), whose value is infinite, in the 
appropriate limiting operation, cancels exactly the double summation 
occurring from those terms in Eq. (B1) with il = 0. Using 

Tg e -  ~a fo ~ COS 5~X 
5 a = dXa-T--~x2 

and performing the summation over the index i2, one transforms Eq. (B3) 
to 

crl=- ~ ax (i2+x2)1/2 + ~ l o g  1 - e x p  +rift 3 
i l  = i 

(B5) 

fo o exp -- [2n(i~ + x2) 1/2 ] (B6) 
G3=- ~ dx (i~+x2)~/2 { 1 - e x p  -[2n(i~+x2)l/2]} 

i 1 =  1 

The summation in Eq. (B5) is performed by noting that the integral is 
the Bessel function of the second kind of index 0, Ko(2nil 6/L); the 
summation over these Bessel functions can be performed(19): 

_ Ko 7 + l o g  + o ( 1 )  
(B7) i I = 1 

7=0.577216... 

Collecting these results and performing similar reductions on the terms 
with zero il, i2, or i 3 gives 

I n  1 1 ] C~sc=--8 -}-~---~ log 2 + ~ (7 --1og n) + l(2n) + a2 + 0. 3 

= 2.837297479... (B8) 

where/(2n)  is the Lambert series defined in Eq. (15). The sums 0- 2 and a3 
have the same rapid convergence; they are evaluated numerically with only 
those 16 terms with 4/> il, i2 ~> 1 for a2 and those four terms with 4/> i )  1 
for 0- 3 and l(2n) required to obtain the numerical value given, accurate to 
ten places. This value is in agreement with the only value for c~sc, given to 
ten placesJ 2~ 

This direct method of obtaining the constant esc has its advantages in 
the context of numerical analysis over the Ewald method. One could 
pursue in this fashion further terms in the expansion of (1) ~U0oo(&, 0, 0) in 
powers of 6. 



750 Torney and Goldstein 

A C K N  O W L E D G  M ENTS 

W e  are grateful  to Profs. Joseph Kel ler  and  Jacob  Rubins te in  for 
cr i t ical ly read ing  the manusc r ip t  and  for p rov id ing  useful references, to 
Prof. Fr i t s  Wiegel  for descr ib ing Sinai 's  bi l l iard,  and  to Dr.  D. M. Soum-  
pasis for suggest ing the in tegra l  r ep resen ta t ion  of r -3/2 appea r ing  in 

Append ix  A. Pa t r i c i a  Rei temeier  d id  an exempla ry  j o b  in manusc r ip t  
p roduc t ion .  This  work  was s u p p o r t e d  by the U. S. D e p a r t m e n t  of  Energy. 

R E F E R E N C E S  

1. Kerson Huang and C. N. Yang, Phys. Rev. 105:767-775 (1957). 
2. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. 2 (McGraw-Hill, 

New York, 1953), p. 1001. 
3. J. R. Lebenhaft and R. Kapral, 3. Stat. Phys. 20:25 56 (1979). 
4. B. U. Felderhof, Physica 130A:34-56 (1985). 
5. M. Abramowitz and I. Stegun, eds., Handbook of Mathematical Functions (U. S. 

Government Printing Office, Washington, D.C., 1964), p. 360. 
6. R. Courant, Differential and Integral Calculus, Vol. 2 (Blackie, London, 1936), p. 367. 
7. M. V. Berry, Ann. Phys. (N.Y.) 131:163-216 (1981). 
8. Eldon R. Hansen, A Table of Series and Products (Prentice-Hall, Englewood Cliffs, New 

Jersey, 1975), p. 243. 
9. H. Hasimoto, J. Fluid Mech. 5:317-328. 

10. Linus Pauling and E. Bright Wilson, Introduction to Quantum Mechanics (McGraw-Hill, 
New York, 1935), p. 165. 

11. Otto Emersleben, Phys. Z. 24:73-80 (1923). 
12. Otto Emersleben, Phys. Z. 24:97-104 (1923). 
13. Rosemary A. Coldwell-Horsfall and Alexei A. Maraudin, J. Math. Phys. 1:395~,04 (1960). 
14. Howard C. Berg and Edward M. Purcell, Biophys. J. 20:193 219 (1977). 
15. Lord Rayleigh, Phil. Mag. 34:481-502 (1892). 
16. Harold Levine, J. Inst. Math. Appl. 2:12-28 (1966). 
17. Dikeos Soumpasis, J. Chem. Phys. 69:3190-3196 (1978). 
18. G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed. (University Press, 

Cambridge, 1966), p. 388. 
19. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic 

Press, New York, 1980), p. 978. 
20. W. L. Slattery, G. D. Doolen, and H. E. DeWitt, Phys. Rev. A 21:2087-2095 (1980). 


